# Journal of Clinical Trials & Research

JCTR, 3(3): 203-205 www.scitcentral.com



t Communications Ones Access

# **Short Communication: Open Access**

# The Quantile Zeid-G Family of Distributions by a Lambert-W Type Weight with Illustration to Bladder Cancer Patients Data

# Clement Boateng Ampadu<sup>1\*</sup>

\*1Carrolton Road, Boston, MA 02132-6303, USA.

Received May 28,th 2020; Revised June 08th, 2020; Accepted June 10th, 2020

### **ABSTRACT**

Some contributions to quantile distribution theory appeared in [1-2]. In this short note, the class of quantile Zeid-G statistical distributions are introduced. A sub-model of this family is shown to be practically significant in fitting real-life data. The researchers are asked to further develop the properties and applications of this new class.

**Keywords:**  $\binom{1}{\epsilon}$  PT-G family distributions, Zeid-G, quantile generated family of distributions, cancer patient's data, heavy-tailed Ampadu-G

#### INTRODUCTION

Firstly, we recall the following

**Definition 1.1.** [3]. Let  $\alpha \neq \binom{1}{e}$ ,  $\alpha > \binom{1}{e}$  and  $\xi > 0$  where  $\alpha$  is the rate scale parameter and  $\xi$  is a vector of parameters in the baseline distribution all of whose entries are positive. A random variable Z is said to follow the  $(\frac{1}{e})^{\alpha}$  power transform family of distributions if the Cumulative Distribution Function (CDF) is given by

$$F(x; \alpha, \xi) = \frac{1 - e^{-\alpha G(x; \xi)}}{1 - e^{-\alpha}} x \in R,$$

where the baseline distribution has *CDF G* (x;  $\xi$ ).

**Proposition 1.2** [3]. The PDF of the  $(\frac{1}{e})^{\alpha}$  power transform family distribution is given by

$$f\left(\mathbf{x};\alpha,\xi\right) = \frac{1}{1-e^{-\alpha}} \left(\alpha g(x,\xi)\right) e^{-\alpha g(x,\xi)}$$

where  $\alpha \neq \frac{1}{e}$ ,  $\alpha > \frac{1}{e}$  and  $\xi > 0$  and  $G(x;\xi)$  is the baseline cumulative distribution with probability density function  $g(x;\xi)$ .

**Remark 1.3.** The parameter space for  $\alpha$  have been relaxed to  $\alpha \in R$ ,  $\alpha \neq 0$ . The relaxation has been employed in several papers, and for example, see [4]

Using this relaxation, we introduced the following, inspired by the structure of the Chen-G CDF [5].

**Definition 1.4** [6]. A random variable Y is called a Zeid random variable, if the CDF is given by Zeid-G, that is,

$$F(x;\alpha,\beta,\xi) = \frac{1 - e^{-\alpha\left\{1 - e^{-\beta G(x;\xi)}\right\}}}{1 - e^{-\alpha\left\{1 - e^{-\beta}\right\}}} \qquad x \in Supp(G),$$

where the baseline distribution has CDF  $G(x; \xi)$ ,  $\xi$  is a vector of parameters in the baseline CDF whose support depends on the chosen baseline CDF.  $\alpha$ ,  $\beta \in R$ , and  $\alpha$ ,  $\beta \neq 0$ 

The Zeid-Normal distribution was shown to be a good fit to Table 2 [7]. On the other hand, in [8], we introduced the following:

**Theorem 1.5** [8]. Let X follow Ampadu- {Standard Uniform}, and put

$$Y = O_C(e^{1-X})$$

where  $Q_G = G^{-1}$  (.) is the quantile function of the distribution with baseline CDF G, then the CDF of Y is

$$F_Y(y; \alpha, \xi) = 1 - \frac{1 - e^{-\alpha(1 - \log(G(y; \xi)))^2}}{1 - e^{-\alpha}}$$

Moreover, for any t>0, we have

$$\lim_{y \to \infty} e^{ty} \Big( 1 - F_Y(y; \alpha, \xi) \Big) = \infty$$

Corresponding author: Clement Boateng Ampadu, 31 Carrolton Road, Boston, MA 02132-6303, USA, Tel: +1-617-469-7268; E-mail: drampadu@hotmail.com

**Citation:** Ampadu CB. (2020) The Quantile Zeid-*G* Family of Distributions by a Lambert-*W* Type Weight with Illustration to Bladder Cancer Patients Data. J Clin Trials Res, 3(3): 203-205.

Copyright: ©2020 Ampadu CB, Alarcon SE, Puertolas SM, Bravo OM, Valero VL & Arnaiz SJA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Clin Trials Res, 3(3): 203-205

Ampadu CB

Thus, Y is a heavy-tailed Ampadu-G random variable.

In particular, we showed the Heavy-tailed Ampadu-Weibull distribution was a good fit to the bladder cancer patients data recorded in [9]. Motivated by these developments, this paper introduces a so-called quantile Zeid-G family of distributions. Moreover, in the special case G follows the Heavy-tailed Ampadu-Weibull distribution, we show the quantile Zeid-{Heavy-tailed Ampadu-Weibull} distribution is a good fit to the bladder cancer patients data recorded [9]. The reader is recommended to explore further properties and applications of the new class of distributions presented in this paper.

# The New Family Defined

Recall that the generic form of the quantile CDF in the sense of [1] and [2] is Q [V (F(x))] where Q is a quantile, V is an appropriate weight, and F(x) is some baseline distribution.

**Remark 2.1.** If in Definition 1.4,  $\alpha = \beta = 1$ , and G is the CDF of the uniform distribution on [0, 1], then we say Y is a standard Zeid random variable.

Our "Q" is a special solution obtained by solving the following equation for y

$$x = \frac{1 - e^{e^{-y} - 1}}{1 - e^{\frac{1}{e} - 1}}$$

In particular, the special solution, our "Q", is given by

$$Q(x) = \log(\frac{1}{1 - \log(\frac{e}{\frac{1}{e^{\overline{e}}x - ex + e}})})$$

Our "V" is obtained by solving the following equation for y

$$y * e^{1-y} = \frac{1 - e^{e^{-x-1}}}{1 - e^{\frac{1}{e^{-1}}}}$$

In particular, our "V" is given by,

$$V(x) = -W(\frac{e - e^{e^{-x}}}{e(e^{\frac{1}{e}} - e)})$$

Where W(z) gives the principal solution for m in  $z = me^m$ . Thus, we introduce the following

**Definition 2.2.** The CDF of the quantile Zeid-G family of distributions is given by

$$K(x;\xi) = \log\left(-\frac{1}{\log\left(\frac{1}{e^{-e^{\frac{1}{e}}}\right)^{W}\left(\frac{e^{-e^{-G(x;\xi)}}}{e\left(e^{\frac{1}{e}-e}\right)}\right) + e}}\right)$$

Where G is some baseline distribution,  $x \in Supp(G)$ ,  $\xi$  is a vector of parameters in the baseline distribution whose support depends on G, and W(z) gives the principal solution for m in  $z = me^m$ .

#### PRACTICAL ILLUSTRATION

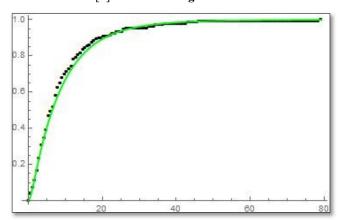
Assume the baseline distribution is given by the heavy-tailed Ampadu-Weibul distribution, that is, in Definition 2.2 we set

$$G(x;\xi) = 1 - \frac{1 - e^{-\alpha e^{-2(\frac{x}{b})^{\alpha}}}}{1 - e^{-\alpha}}$$

Where x, a, b > 0,  $0 \neq \alpha \in \mathbb{R}$ 

**Remark 3.1.** We write QZHT AW (a, b, a) for short to represent the Quantile Zeid- {heavy-tailed Ampadu Weibull} distribution

The quantile Zeid- {heavy-tailed Ampadu Weibull} distribution appears a good fit to the bladder cancer patient's data recorded in [9] as shown in **Figure 1**.



**Figure 1.** The CDF of QZHT AW (0.616938, 2.25327, 6.18023) fitted to the empirical distribution of the bladder cancer patient's data recorded in [9].

#### CONCLUSION

In this paper, we introduced the quantile Zeid-G family of distributions, and showed the quantile Zeid- {Heavy-tailed Ampadu-Weibull} distribution is a good fit to real life data. We hope the researchers will further develop the properties and applications of this new class of statistical distributions.

## REFERENCES

- Ampadu CB (2020) New classes of quantile generated distributions: Statistical measures, model fit and characterizations. Lulu Press Inc.
- Ampadu C (2018) Results in distribution theory and its applications inspired by quantile generated probability distributions. Lulu Press Inc.
- Anafo AY (2019) The New Alpha Power Transform: Properties and Applications, Master of Science in Mathematical Sciences Essay, African Institute for Mathematical Sciences (Ghana). Unpublished Manuscript.

SciTech Central Inc.

J Clin Trials Res (JCTR) 204

J Clin Trials Res, 3(3): 203-205

Ampadu CB

- 4. Ampadu CB (2019) A New T-X Family of Distributions. Annal Biostat Biomed Appl 2: 1-3.
- Anzagra L, Sarpong S, Nasiru S (2020) Chen-G class of distributions. Cogent Math Stat 7.
- 6. Ampadu CB (2020) The Zeid-G Family of Distributions. Biomed J Sci Tech Res 27: 20940-20942.
- 7. Alzaatreh A, Lee C, Famoye F (2014) T-normal family of distributions: A new approach to generalize the normal distribution. J Stat Distr Appl 1: 16.
- 8. Ampadu CB (2020) The Heavy-Tailed Ampadu-G Family of Distributions. -Unpublished Manuscript.
- 9. Ahmad Z, Elgarhy M, Hamedani GG (2018) A new Weibull-X family of distributions: Properties, characterizations and applications. J Stat Distrib App.