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The important requirement for approval of a new drug, in 

case it happens to be chiral, that both enantiomers of the 

drug be studied in detail [1], have focused the attention of 

synthetic organic and medicinal chemists on the 

development of new methods for catalytic asymmetric 

synthesis especially of relevant saturated N-heterocycles. 

Despite the success of chirally modified transition-metal 

catalysts in asymmetric synthesis, in the form of the Nobel 

Prize in Chemistry in 2001, the field of asymmetric organic 

synthesis has since then been dominated by organocatalysts 

due to their ability to catalyze a variety of fundamentally 

important transformations in medicinal chemistry and 

therefore chemical biology. One example is the Staudinger 

synthesis of β-lactams representing one class of saturated N-

heterocycles and continuing to provide unique opportunities 

for the discovery of new derivatives with novel 

pharmacological profiles [2,3]. Specifically, β-lactams have 

recently been found to have potential as the basis for 

treatments for neurological disorders including amyotrophic 

lateral sclerosis (ALS), also known as Lou Gehrig’s disease 

[4]. Although significant progress has been made in 

asymmetric organocatalytic Staudinger synthesis of β-

lactams since the inaugural and pioneering investigations by 

Lectka and coworkers around the turn of the century [5,6], 

the same did not hold true regarding the development of a 

novel Gilman-Speeter process for the catalytic 

enantioselective synthesis of β-lactams [7]. Efforts directed 

at this latter goal are ongoing in this Laboratory. 

On the other hand, the piperazine ring, besides defining a 

major class of saturated N-heterocycles, has been classified 

as a privileged structure in Medicinal Chemistry since it is 

more than frequently found in biologically active 

compounds including several marketed blockbuster drugs 

such as Glivec (Imatinib) and Viagra (Sildenafil) [8,9]. 

Actually, an analysis of all U.S. FDA approved small 

molecule drugs found that 21% contained saturated 6-

membered N-heterocycles with an additional heteroatom (N, 

piperazines; O, morpholines; S, thiomorpholines) [10]. 

Indeed, 13 of the 200 best-selling small molecule drugs in 

2012 contain a piperazine ring [11]. In the vast majority of 

these molecules, however, the piperazine ring is not 

substituted on any of its carbon atoms. Specifically, analysis 

of the piperazine substitution pattern reveals a luck of 

structural diversity, with almost every single drug in this 

category (83%) containing a substituent at both the N1- and 

N4-positions compared to only a few drugs having a 

substituent at any other position (C2, C3, C5 and C6) [11]. 

Significant chemical space that is closely related to that 

known to be biologically relevant, therefore, remains 

unexplored. In order to explore this chemical space, an 

efficient and enantioselective synthesis of C-substituted 

piperazines must be designed and developed [12,13]. Efforts 

toward the implementation of this particular target are 

ongoing in this Laboratory. It must be emphasized, however, 

that these latter efforts were initiated by considering a novel 

retrosynthetic analysis of the unique marine natural product 

Ecteinascidin-743 (1, Et-743 also known as Trabectidin or 

Yondelis™, a commercially  available drug against soft-

tissue sarcoma), centered at its piperazine ring shown in 

structure 1 (Figure 1) [14-16]. 
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Figure 1. Structure 1 showing piperazine ring. 

Since piperazine derivatives have been reported to elicit a 

broad spectrum of pharmacological activities including 

antidepressant, anticancer, anti-helminthic, anti-bacterial, 

antifungal, anti-mycobacterial, anti-malarial, anti-

tuberculant, anti-convulsant [8] and anti-AIDS [17]; one can 

easily comprehend that the sky will be the limit, as far as 

novel drug development is concerned, once this catalytic 

enantioselective process will be fully developed [18].  

Finally, aziridines are structurally fascinating, 

pharmaceutically important, and finding applications in 

synthetic organic and medicinal chemistry [19-20]. Thus, 

they can be readily converted into a variety of nitrogen-

containing compounds due to the inherent reactivity of the 

constrained three-membered ring present in biologically 

active natural products such as the azinomycins [21] and the 

mitomycins [22]. Novel catalytic enantioselective synthesis 

of aziridines as well as their employment in piperazine 

syntheses is under active investigation in this Laboratory 

[23-25]. 
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