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ABSTRACT 
The tight blood sugar control among type 1 (T1DM) and type 2 (T2DM) diabetes mellitus patients is recommended by 
different specialists concerned with this disease aiming at avoidance of long term complications of diabetes. In spite of the 
significant impact of this approach on decreasing of these complications, still these complications are still frequently 
encountered. This weak success is partly explained by the frequent failure to achieve glycemic targets. In addition, the 
conventional hypoglycemic agents do not properly control the underlying pathogenic mechanisms of these complications. 
The last decade has witnessed the evolution of new hypoglycemic and antioxidant agents the carry additional features 
enabling them to adequately fight these pathogenic mechanisms. In this review, we are going to thoroughly discuss these 
mechanisms and highlight the therapeutic value of initiating treatment of new onset diabetes using these agents instead of the 
long standing traditional approach. 
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INTRODUCTION 

Diabetes mellitus is a pandemic disease that affected 108 
million persons worldwide in 1980 [1]. This figure is 
exponentially increasing to approach 430 million persons in 
2014 [1]. In spite of the increased awareness about this 
disease and the worldwide efforts to follow guidelines in 
management, 3.7 million persons lost their lives in 2012 
because of diabetes and its complications [2]. The hazard 
ratio of cardiovascular mortality among diabetic patients is 
2.3 folds that in non-diabetic personnel [3]. The average life 
span of the diabetic patients is 10-15 years shorter than non-
diabetic subjects [4]. Beside this increased mortality, 
diabetes is the cause of many disabling morbidities. Diabetic 
retinopathy is the leading cause of blindness among 
working-age adults worldwide in spite of the energetic 
treatment of the established cases of retinopathy that can 
reduce the risk of visual loss by 60% [5]. Diabetes is the 
leading cause of non-traumatic lower-extremity amputation 
[6]. Diabetic peripheral neuropathy (PN) is the most 
prevalent cause of sensory neuropathy [7]. Diabetic kidney 
disease (DKD) is the most common cause of end-stage renal 
disease (ESRD). One third of T1DM develop ESRD, while 
only 10-20% of type 2 diabetes mellitus (T2DM) patients 
progress to ESRD [8,9]. The prevalence of congestive heart 
failure (CHF) among diabetic patients aged 55 to 64 years is 

5.5 folds the prevalence among non-diabetic personnel of the 
same age [10]. Diabetes is an independent risk factor for the 
development of ischemic heart disease (IHD). CHF and IHD 
are the main causes of death in T1DM and T2DM patients 
[11]. Diabetes mellitus confers a greater risk of 
cerebrovascular stroke [12]. Endothelial dysfunction is a 
common pathology underlying the etiopathogenic 
mechanism of all these complications [13]. This endothelial 
dysfunction is a sequel of many metabolic changes that are 
usually encountered in hyperglycemic personnel. These 
metabolic changes include increased oxidative stress [14], 
hyperuricemia [15], stimulation of sodium hydrogen 
exchangers  (NHE)  [13]  and  stimulation  of  renal  sodium 
Corresponding author: Professor Usama AA Sharaf El-Din, Nephrology 
Unit, Internal Medicine Department, School of Medicine, Cairo University, 
Nasr City, Post Code: 11759, Cairo, Egypt, Tel: +201111333800; Fax: 
+20222753890; E-mail: usamaaas@gmail.com 

Citation: El-Din UAS, Salem MM & Abdulazim DO. (2019) Effects of 
Mobile Phone Radiation and Exercise on Testicular Function in Male 
Wistar Rats. Adv Res Endocrinol Metab, 1(1): 11-29. 

Copyright: ©2019 El-Din UAS, Salem MM & Abdulazim DO. This is an 
open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 



SciTech Central Inc. 
Adv Res Endocrinol Metab (AREM) 12 

Adv Res Endocrinol Metab, 1(1): 11-29    El-Din UAS, Salem MM & Abdulazim DO 

hydrogen exchangers (NHE) [13] and stimulation of renal 
sodium glucose transporters (SGLT) [16]. 

25 years ago, the Diabetes Control and Complications Trial 
(DCCT) research group announced the significant impact of 
tight blood sugar control on development of micro-vascular 
complications among T1DM [17]. Five years later, the 
United Kingdom Prospective Diabetes Study (UKPDS) 
group announced similar findings among T2DM patients 
[18]. However, reduction of micro-vascular complications in 
the intensive insulin treatment group was by 50% compared 
to poorly controlled cases in DCCT trial. In addition, the 
tight blood sugar control only has a marginal impact on 
cardiovascular disease and all-cause mortality among 
diabetic patients [19]. On the other hand, the tight blood 
sugar control using sulphonyl urea compounds and insulin is 
associated with increased risk of severe hypoglycemia 
and/or weight gain [17,18]. IN UKPDS study, T2DM 
patients allocated to metformin had 32% reduction for any 
diabetes-related endpoint, 42% for diabetes-related death 
and 36% for all-cause mortality when compared with 
patients allocated to sulphonyl urea or insulin [20]. These 
favorable effects of metformin were suggested as 
consequence of the impact of this agent on body weight and 
hypoglycemic attacks. According to these results and others, 
the American College of Endocrinology (ACE) and the 
American Association of Clinical Endocrinology (AACE) 
recommend that the choice of anti-diabetic therapies must be 
based on many attributes that include anti-hyperglycemic 
efficacy, risk of inducing hypoglycemia and risk of weight 
gain [21]. The last 15 years have witnessed the introduction 
of three new hypoglycemic agents, namely, glucagon like 
peptide-1 receptor agonists (GLP-1RA), dipeptidyl peptidase 
4 inhibitors (DPP4Is) and sodium glucose co-transporter-2 
inhibitors (SGLT2Is). These 3 agents carry common 
features, namely, the minimal incidence of hypoglycemic 
events and the favorable impact on body weight. GLP-1RA 
and SGLT2Is are associated with body weight reduction 
while DPP4Is are weight neutral [22,23]. Compared to older 
hypoglycemic agents, these newer groups carry potential 
favorable protective effects on endothelium, and can 
significantly reduce adverse cardiovascular events of 
diabetes in case of SGLT2Is and GLP-1RA and are reno-
protective. In addition, SGLT2Is could prevent or withhold 
diabetic retinal complications [24]. This review will 
highlight the possible new strategy to prevent the 
development and/or progression of diabetic complications, 
the main target of this disease management. 

THE ENDOTHELIUM IN DIABETES 

The role of the endothelium as an important regulator of 
local vascular tone was first reported in 1980 [25]. The 
vascular endothelium is an important component of diabetic 
complications. Endothelial dysfunction is eminent not only 
in diabetic patients, but also in patients suffering obesity or 
metabolic syndrome. Decreased synthesis of nitric oxide 

(NO), a potent vasodilator, is the eminent feature of 
endothelial dysfunction. Decreased NO underlies insulin 
resistance by reducing insulin access to tissue [26]. Beside 
the blood flow effect, insulin has to cross endothelial cells to 
reach target tissues [27,28]. In addition, hyperglycemia is 
associated with endothelial mitochondrial fragmentation 
with increased production of reactive oxygen species (ROS) 
[29]. Increased endothelial ROS is associated with increased 
breakdown of NO [30]. Impaired endothelial function was 
demonstrated within visceral fat [31], cardiac and skeletal 
muscles [32]. Endothelial dysfunction is associated with 
accelerated atherosclerosis in an animal model [33], diabetic 
retinopathy [34], nephropathy [35], neuropathy [36] and 
cerebral dysfunction [37]. In order to affirm the role of 
endothelial dysfunction in development of diabetic 
nephropathy, 2 separate studies have disclosed that 
endothelial nitric-oxide synthase (eNOS) deficient mice 
robustly develop diabetic nephropathy [38,39]. 

SODIUM HYDROGEN EXCHANGERS 

The sodium hydrogen exchangers (NHE) are trans-
membrane ion channels that are responsible for intracellular 
pH regulation through extrusion of hydrogen ion in 
exchange with sodium influx (Figure 1). NHE exist in nine 
isoforms [40,41]. NHE1 is present on the surface of 
endothelium, vascular smooth muscle cells (VSMCs), 
cardiomyocytes and platelets, while the isoform encountered 
on the surface of renal tubular and intestinal epithelium is 
NHE3. Activation of the NHE1 within endothelium, VSMCs 
and cardiomyocytes may underlie micro-vascular and 
macro-vascular complications of diabetes. It can also have a 
role in insulin resistance and systemic hypertension. These 
exchangers cause increased sodium influx that stimulates 
sodium calcium exchanger with consequent increase of 
intracellular calcium. Within endothelium, increased 
cytoplasmic calcium inhibits eNOS with consequent 
decrease of NO synthesis (Figure 2). In addition increased 
intracellular calcium is associated with increased 
intracellular and mitochondrial activity of calpain, a cysteine 
protease that can damage the inner mitochondrial membrane, 
a process that ends with cell apoptosis [42]. Activation of 
NHE1 in diabetic patients is a consequence of high blood 
glucose, insulin, angiotensin or adipokines [43]. Endothelial 
NHE1 activation leads to increased influx of calcium into 
the cytoplasm and mitochondria associated with increased 
calpain enzyme activity. These changes lead to endothelial 
dysfunction and senescence. The development of systemic 
hypertension, increased insulin resistance, diabetic 
retinopathy, nephropathy and neuropathy are consequences 
of decreased eNOS activity and accelerated endothelial 
senescence. It can also explain the increased frequency of 
vascular calcification, peripheral vascular disease and 
diabetic cerebrovascular dysfunction [44]. Mitochondrial 
injury is associated with impaired antioxidant defense [45]. 
Inhibition of NHE1 using cariporide was associated with 
increased NO release, eNOS activity simultaneously 
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decreased ROS production, decreased nuclear factor-κB 
(NF-κB) activation and decreased production of tumor 
necrosis factor-α and intercellular adhesion molecule-1 [46]. 
Increased intracellular calcium induced by NHE1 isoform on 
the surface of cardiomyocytes leads to cardiac hypertrophy. 
Peripheral coronary ischemia secondary to endothelial 
dysfunction can further activate cardiac NHE1. In addition 
active NHE1 increases intracellular and intra-mitochondrial 
calpain that contributes to degeneration, apoptosis and 
fibrosis of myocardium (Figure 3) [43]. NHE3 is the 
isoform within the cytoplasmic membrane of the renal 
proximal tubular epithelium and ascending limb of loop of 
Henle. Activation of renal NHE3 causes sodium retention 

and can thus contribute to development of systemic 
hypertension in diabetic patients (Figure 4) [43,47]. 
Activation of NHE1 on the surface of platelets plays a 
significant role in platelet activation. This effect is mediated 
through increased intracellular calcium and can contribute to 
the pro-coagulant state in diabetes [48]. Accordingly, 
activation of NHE1 on the surface of endothelial cells, 
VSMCs, platelets and cardiomyocytes beside the activation 
of renal NHE3 share in the pathogenesis of systemic 
hypertension, microvascular complications and 
macrovascular complications of diabetes that finally result in 
heart failure and end stage renal disease.  

Figure 1. Diabetic state increases the activity of the sodium/hydrogen exchanger on the surface of endothelial cells, vascular 
smooth muscle cells, cardiomyocytes and tubular epithelial cells. Consequently, intracellular and mitochondrial calcium. 

Figure 2. Increased cytosolic calcium leads to decreased nitric oxide synthesis and increased secretion of endothelin. 
Increased vascular smooth muscle tone leads to increased peripheral resistance and decreased tissue perfusion. This leads to 
decreased insulin delivery. Endothelial damage induced by calcium can also decrease permeability of the endothelium to the 
delivered insulin. Decrease nitric oxide production has a role in pathogenesis of neuropathy, retinopathy and nephropathy. 
PR: Peripheral Resistance; IR: Insulin Resistance 
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Figure 3. Increased cytosolic calcium within the cardiomyocytes leads to ventricular hypertrophy and increased activity of 
the digestive enzyme calpain. This lysolethicin digests mitochondrial membranes and results in myocardial damage that 
finally leads to heart failure. 

Figure 4. Increased activity of NHE3 isomer within the proximal convoluted tubules increases sodium absorption from the 
lumen of these tubules in exchange with the secreted hydrogen. Decreased sodium delivery to the distal nephron segments 
results in glomerular hyperfiltration. Diabetic state and insulin administration increase NHE3 activity while SGLT2Is and 
GLP1RAs inhibit it. 
NHE: Sodium Hydrogen Exchanger; SGLT2Is: Sodium Glucose Transporter-2 Inhibitors; GLP1RAs: Glucagon Like Peptide 
Receptor Agonists 

OXIDATIVE STRESS 

Increased oxidative stress is one of the metabolic 
derangements encountered in diabetes. Diabetic patients 
have increased production of free oxygen radicals and 
decreased wash out of these radicals. Increased production 
of free oxygen radicals is attributed to increased activity of 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase [49,50], cyclo-oxygenase [51] and lipoxygenase 
[52] enzymes. All these enzymes are induced by
hyperglycemia. Sodium-glucose cotransporter 2 (SGLT2)
within the brush border of proximal convoluted tubular

epithelium (PCT) is another pathway of free oxygen 
radicals’ overproduction. Increased intracellular uric acid 
(UA) induces NADPH oxidase [53]. Mitochondrial damage 
results in impaired antioxidant defense [45]. Increased free 
oxygen radicals activate NF-κB [54]. When NF-κB is free 
from its inhibitor, it translocate from the cytoplasm to the 
nucleus where it triggers the genes encoding transforming 
growth factor-β1 (TGF-β1) and monocyte chemo-attractant 
protein-1 (MCP-1) and intercellular adhesion molecule 1 
(ICAM1) [55-57]. Reactive oxygen species (ROS) stimulate 
overproduction of protein kinase C (PKC) and mitogen-
activated protein (MAP) kinase within mesangial cells 
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(MCs) and pericytes. All these factors stimulate 
overproduction of extracellular matrix proteins [58]. 

URIC ACID 

Serum uric acid (SUA) is a strong predictor for development 
of proteinuria in T1DM patients. The risk for proteinuria 
increases by 80% with every 1 mg/dL rise in SUA [59]. In 
addition, the risk of decline of glomerular filtration rate 
(GFR) is significantly higher (2.4 folds) in T1DM patients 
with SUA>6.6 mg/dL when compared with candidates with 
lower level [60]. In T1DM patients followed-up for more 
than 18 years, SUA was an independent predictor of overt 
proteinuria [61]. In T2DM patients, 68% of the 
hyperuricemic versus 41.5% with normal SUA had diabetic 
nephropathy (DN) [62]. Further prospective studies 
confirmed the increased risk of development of proteinuria 
and decline of GFR among T2DM with high SUA [63,64]. 
SUA>7 mg/dL in males and >6 mg/dL in females were 
associated with higher rate of DN progression and overall 
mortality among T2DM patients that have the disease for 
fifteen years or more [65]. Treatment of T2DM patients 
suffering DN and high SUA with allopurinol was associated 
with a significant decrease of urine albumin excretion 
(UAE) and serum creatinine and a significant increase of 
GFR over three years of follow-up [66]. The significant 
favorable effect of urate-lowering therapy on the rate of 
GFR decline has been confirmed in a recent meta-analysis of 
19 randomized controlled trials that enrolled 992 patients 
[67].  

Increased level of SUA is associated with endothelial 
dysfunction. High mobility group box chromosomal protein 
1 (HMGB1) is a pro-inflammatory mediator synthesized and 
secreted by activated phagocytes or monocytes. When 
secreted extracellular, HMGB1 can interact with the receptor 
for advanced glycation end products (RAGE), inducing the 
production of multiple cytokines, and the induction of 
vascular adhesion molecules [68]. In a recent in vitro study, 
high UA concentration inhibited eNOS expression and NO 
production in human umbilical vein endothelial cells 
(HUVECs), increased extracellular HMGB1 secretion, up-
regulated RAGE expression, activated NF-κB and increased 
the level of inflammatory cytokines. Blocking RAGE 
significantly suppressed the DNA binding activity of NF-κB 
and the levels of inflammatory cytokines [69]. In addition, 
high SUA is a significant predictor of systemic hypertension 
[122]. 

ROLE OF GLUCAGON-LIKE PEPTIDE-1 
RECEPTOR AGONISTS (GLP-1RA) 

Glucagon like peptide-1 (GLP-1) is a peptide hormone 
secreted by the neuro-endocrine cells within the mucosa of 
the small intestine [70]. In healthy individuals, GLP-1 
activates insulin secretion, inhibits glucagon secretion and 
slows gastric emptying and increases sense of satiety [70]. 
The susceptibility of this peptide hormone to enzyme 

breakdown by the dipeptidyl peptidase-4 enzyme (DPP-4) is 
responsible for the very short plasma half-life of GLP-1. It 
cannot be used therapeutically except as continuous 
intravenous infusion [71]. GLP-1RA is exogenous GLP-1 
analogues with variable sequence similarity to the human 
GLP-1 [72]. The variability involved mainly two sites in the 
GLP-1 molecule susceptible to cleavage by DPP4, namely, 
alanine at position 8 and lysine at position 34. These changes 
beside other modifications have helped to find out many 
peptides that simulate GLP-1 action but with longer half-life 
[71]. GLP-1RAs were found to decrease body weight and 
some cardiovascular morbidity, without increasing the risk 
of hypoglycemia [73]. Robust indications for GLP-1RAs in 
T2DM patients not responding to metformin monotherapy, 
dual therapy, or insulin include overweight, inability to 
control appetite, high risk of cardiovascular disease, and the 
need of high doses of insulin [71]. Several clinical studies 
have shown that the use of GLP-1 RAs is associated with 
reduction in systolic and to a minor degree, diastolic blood 
pressure [74]. However, long term use of GLP-1 RAs was 
frequently reported to be associated with increased heart rate 
[74,75]. In addition, the current evidence does not support 
any beneficial effect of GLP-1RAs in patients with heart 
failure and/or impaired ventricular function [76,77]. The 
evaluation of lixisenatide in acute coronary syndrome 
(ELIXA) trial was the first cardiovascular outcome trial 
(CVOT) of GLP-1RAs in T2DM. Based on this trial, 
treatment with lixisenatide in addition to conventional 
therapy had no impact on the cardiovascular risk in patients 
with T2DM and recent acute coronary syndrome [78]. In the 
liraglutide effect and action in diabetes: Evaluation of 
Cardiovascular Outcome Results (LEADER) trial, which 
was finalized in December 2015, liraglutide was 
significantly associated with reduced rate of death from any 
cause and cardiovascular events in patients with T2DM at 
high risk for cardiovascular events. In addition, patients with 
eGFR<60 ml/min/1.73 m2 and patients aged 50 years or 
more may have greater benefit of liraglutide treatment. On 
the other hand, hospitalizations for heart failure were not 
different between liraglutide and placebo groups [79]. 
Although the incidence of retinopathy was similar in this 
trial, the chance of development of nephropathy was 
significantly lower in patients treated with liraglutide [79]. 
In SUSTAIN-6 trial, semaglutide was associated with 
significantly less incidence and progression of nephropathy. 
On the other hand, higher percentage of patients in 
semaglutide group developed retinopathy. Semaglutide was 
also associated with 26% reduction in the hazard of 
cardiovascular mortality, non-fatal myocardial infarction or 
non-fatal stroke [80]. In EXSCEL trial, extended release 
exenatide failed to significantly decrease the incidence of 
cardiovascular events [81]. This result could be due to the 
broader T2DM population studied in EXSCEL trial as 
regard to age and cardiovascular risk, the shorter follow-up 
period, the lower HbA1c levels and the concomitant 
hypoglycemic treatment (SGLT2Is were frequently used in 
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the placebo group) [82]. A meta-analysis including nine 
randomized trials with dulaglutide in 6010 T2DM patients 
has shown that 0.67% of patients treated with dulaglutide vs. 
1.18% of the placebo group developed one of the end points. 
This difference was not significant [83]. 

Other glucose-independent effects of GLP-1RAs include 
decrease in blood pressure, dyslipidemia, inflammation and 

fibrosis. Through inhibition of renal NHE3, GLP-1RAs can 
promote natriuresis and diuresis. Additional effects include 
inhibition of the intrarenal renin angiotensin system, 
inflammation, and apoptosis. The mechanism of these 
effects remains to be established. Recent studies suggest 
important antioxidant and anti-apoptotic activities of GLP-
1RAs (Figure 5) [84]. 

Figure 5. Hyperglycemia stimulates NADPH oxidase enzyme within different organs including the kidney. Consequent 
increased production of free oxygen radicals results in increased cascade of degenerative and inflammatory processes that 
underlie pathology of the diabetic kidney. Glucagon like peptides inhibits NADPH oxidase and thus can muffle development 
or progression of diabetic nephropathy. 
GLP1: Glucagon Like Peptides; NADPH: Nicotinamide Adenine Phosphate; ROS: Reactive Oxygen Species; NF-κB-Nuclear 
Factor Kappa B; MCP1: Macrophage Chemoattractant Peptide; VSMCs: Vascular Smooth Muscle Cells; ATP: Adenosine 
Triphosphate; RAS: Renin-Angiotensin System; EMT: Epithelial Mesenchymal Transition 

DIPEPTIDYL PEPTIDASE 4 INHIBITORS 

The discovery of non-enzymatic functions for DPP4 within 
the kidney has attracted the attention for the reno-protective 
functions of this hypoglycemic agent especially after 
disclosure of the anti-proteinuric effect of saxagliptin in 
T2DM patients during “Saxagliptin Assessment of Vascular 
Outcomes Recorded in Patients with Diabetes Mellitus - 
Thrombolysis in Myocardial Infarction 53” (SAVOR-TIMI 
53) trial [85-89]. In addition experimental pharmacologic
and genetic inhibition of DPP4 had proven efficacy in
preventing progressive renal damage in animal models of
acute and chronic kidney disease [90,91].

The glucose lowering action of DPP4Is is through inhibition 
of breakdown of endogenous GLP and glucose-dependent 
insulinotropic peptide (GIP). These incretins improve 
sensitivity of pancreatic β cells to glucose [92]. DPP4 exists 
in 2 forms, membrane bound form and soluble form [93]. 
Membrane bound DPP4 was encountered on the cell 
membrane of epithelial cells in the kidneys, lungs, and small 
intestine. It also exists on endothelial cells, and immune cells 

[94-96]. DPP4 on the surface of immune cells was initially 
recognized as cluster of differentiation 26 (CD26) [95,96]. 
The soluble form (sDPP4) is the consequence of shedding of 
the membrane bound form. sDPP4 level increases in obese 
subjects and in T2DM patients and may participated in 
increased insulin resistance in these cases [97]. Membrane 
bound DPP4 expression is induced under conditions of 
hypoxia as well as its’ shedding [98,99]. 

Within the kidney, DPP4 in S1-S3 segments of the proximal 
convoluted tubules (PCT) are linked to NHE3 and plays a 
role in salt and water retention through stimulation of this 
exchanger, NHE3 activity decreases on inhibition of 
angiotensin II synthesis by captopril [100] or inhibition of 
DPP4 [101]. Angiotensin II inhibits megalin receptor 
endocytosis protein expression. This process is reversed by 
DPP4Is [102]. Treatment with DPP4 inhibitors may reverse 
reduced uptake of albumin and other low molecular weight 
proteins by PCT [103]. DPP4 was also localized on the 
glomerular endothelium and the base of the foot processes of 
podocytes [104]. DPP4 is expressed on T-cells, B-cells, 
macrophages and dendritic cells in the kidney [96]. 



SciTech Central Inc. 
Adv Res Endocrinol Metab (AREM) 17 

Adv Res Endocrinol Metab, 1(1): 11-29    El-Din UAS, Salem MM & Abdulazim DO 

Stimulation of DPP4 on the surface of different immune and 
inflammatory cells may mediate inflammatory response 
within the kidney in diabetic patients. Inflammation as a 
common feature in diabetes is reduced with DPP4Is. This 
finding highly suggests inflammation as a major player in 
DPP4-mediated kidney injury [105]. 

However, in spite of the reduction in urine albumin 
excretion observed in 3 randomized controlled studies 
(RCT) in T2DM patients treated with DPP4Is [106-108], the 
only study that specifically looked for the anti-proteinuric 
effect of linagliptin failed to find a significant impact [109]. 
Moreover, DPP4Is failed to have a significant impact on 
doubling of serum creatinine, change in GFR or ESRD [106-
108]. On the other hand, administration of linagliptin to 
T2DM patients that had renal dysfunction and were already 
treated with ACE inhibitors or ARBs has led to further 
significant reduction in albuminuria [110].  

In normoglycemic milieu, microRNA-29 (miR29) 
suppresses DPP4 gene. In hyperglycemic state, this 
suppression is lost. As a consequence, cell surface DPP4 
activity increases [111]. In diabetic mice, activated 
endothelial DPP4 induces phosphorylation of adjacent 
integrin β1 on the surface of the endothelium. The activated 
DPP4 together with the phosphorylated integrin β1 form a 
complex that up-regulates TGF β receptor and activates the 
surface vascular endothelial growth factor receptor type 1 
(VEGFR1). Up-regulated TGF β receptor and VEGFR1 
stimulate endothelial-mesenchymal transition (EndMT) that 
increases transition to fibroblasts with consequent increased 
fibrogenesis (Figure 6) [112]. However, the lack of 
significant impact of DPP4Is on rate of decline of GFR in 
human studies would cast doubts on their favorable effect on 
renal fibrosis in humans. 

Figure 6. microRNA-29 is a natural inhibitor of endothelial DPP-4 within renal vasculature. Hyperglycemia inhibits 
microRNA-29 and thus stimulates endothelial DPP-4. 
DPP-4: Dipeptidyl Peptidase; TGF: Transforming Growth Factor; EndMT: Endothelial Mesenchymal Transition 

In addition, the impact of DPP4Is on the retina is debatable. 
While some investigators reported an increase in retinal 
endothelial leakage and vascularity [113], others have 
reported a significant reduction in the risk of diabetic 
retinopathy progression [114].  

The lack of strong favorable effect of DDP4Is on diabetic 
microvascular and macrovascular complications of diabetes 
in spite of the attractive and favorable molecular and 
experimental mechanisms can be attributed to potentiation of 
the stem cell chemokine, stromal cell-derived factor-1 (SDF-
1), which promotes inflammation, proliferation and 

neovascularization [115]. SDF-1 enhances atheromatous 
plaque growth and instability, and promotes cardiac 
inflammation and fibrosis [116]. The renal effects of DPP4Is 
are mainly through potentiation of SDF-1which in turn can 
promote podocyte injury and glomerulosclerosis. In 
addition, SDF-1 induces natriuresis in the distal tubules, 
contrary to SGLT2Is and NHE3 inhibitors that act on PCT. 
Hence, SDF-1 cannot utilize tubuloglomerular feedback to 
modulate the glomerular hyper filtration (Figure 7) 
[115,117]. SDF-1 may also aggravate both retinopathy and 
neuropathy [115,118]. 
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Figure 7. The beneficial effects of DPP4Is on the kidney are muffled by the bad effect induced by stromal cells derived 
factor 1 (SDF-1). 
DPP-4: Dipeptidyl Peptidase; TGF: Transforming Growth Factor; EndMT: Endothelial Mesenchymal Transition 

SODIUM GLUCOSE CO-TRANSPORTERS 
INHIBITORS 

SGLT2Is constitute a recently introduced group that has 
insulin independent hypoglycemic effect. Three members of 
this group, namely empagliflozin, canagliflozin and 
dapagliflozin are FDA approved and are used in USA and 
Europe. By inhibiting the upregulated SGLT2 co-
transporters in the brush border of S1 segment of the PCT, 
SGLT2Is can reduce the renal threshold for plasma glucose 
from 196 to 22 mg/dL, thereby enhancing urinary excretion 
of glucose [119]. They also increase distal sodium delivery 
and hence distal tubular sodium absorption. Increased 

adenosine triphosphate (ATP) consumption during sodium 
absorption with a consequent increase of adenosine 
production causes afferent arteriolar vasoconstriction and 
fall in renal blood flow, reversal of hyper filtration and 
accordingly reduces renal injury (Figure 8). In addition, 
SGLT2Is exert other beneficial effects, including reductions 
in body weight, SUA and blood pressure [120]. Excess 
glucose within the tubular lumen triggers the uric acid 
transporter GLUT9 within S3 segment of the PCT and in the 
collecting duct to excrete UA in exchange with glucose 
[121]. The antihypertensive effect of SGLT2Is is related to 
volume depletion, loss of body weight, inhibition of 
endothelial NHE1 and renal NHE3 and reduction in SUA. 

Figure 8. Mechanism of hyperfitration induced by hyperglycemia and how do SGLT2Is control it. 
UF: Ultrafiltrate; SGLT: Sodium Glucose Transporter; Na+: Sodium; PCT: Proximal Convoluted Tubules; DCT: Distal 
Convoluted Tubules; ATP: Adenosine Triphosphate; MD: Macula Densa; AMP: Adenosine Monophosphate; VD: 
Vasodilatation; AA: Afferent Arteriole; VC: Vaso-Constriction 
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SGLT2Is not only decrease SUA, but through inhibition of 
the aldose reductase activity, they can decrease intracellular 
fructose metabolism and UA synthesis in PCT epithelium 
[123]. Intracellular UA is pro-oxidant. NADPH oxidase is 
thus activated with increased production of ROS, this leads 
to premature senescence of these cells, activation of renin 
angiotensin system, epithelial mesenchymal transition, and 
activation of inflammatory cascade through activation of 
NF-κB (Figure 5) [124-126]. Cyclin-dependent kinase 
(CDK) inhibits cell senescence. P21 is an inhibitor of CDK 

and thus promote cell senescence. Hyperglycemia induces 
P21 while SGLT2Is inhibit this factor within PCT cells 
(Figure 9) [127,128]. In addition, SGLT2Is muffle the 
expression of toll-like receptor-4, the binding of nuclear 
DNA for activator protein 1, the increased collagen IV 
expression as well as the increase in interleukin-6 secretion 
and interstitial macrophage infiltration induced by 
hyperglycemia within the renal parenchyma [129]. 
Moreover, fibrotic and inflammatory genes are suppressed 
within the diabetic kidney by SGLT2Is [130,131]. 

Figure 9. Activation of SGLT2 in diabetic patients leads to overactivity of P21, the natural inhibitor of Cyklin-dependent 
kinase 2. This kinase enzyme inhibits cell senescence. By inducing P21, diabetic patients suffer increased proximal tubular 
epithelium senescence. Through inhibition of SGLT2, SGLT2Is ptotect proximal tubular epithelial cells against increased 
senescence.  
SGLT: Sodium Glucose Transporter; PCT: Proximal Convoluted Tubule 

Through suppression of intracellular UA production, 
SGLT2Is inhibits renal gluconeogenesis. Intracellular UA 
stimulates adenosine monophosphate dehydrogenase 
(AMPD) enzyme and inhibits adenosine monophosphate 
kinase (AMPK) enzyme activities. Intracellular AMPD 
stimulates while AMPK inhibits gluconeogenesis [132]. In 
healthy personnel, the kidneys participate in endogenous 
glucose production. In the fasting state, 20%-25% of 
endogenous glucose production takes place through renal 
gluconeogenesis. In T2DM, renal gluconeogenesis increases 
threefold [133].  

Over a median observation time of 3.1 years, empagliflozin 
in EMPA-REG trial achieved 55% reduction of the chance 
of ESRD in T2DM patients with established cardiovascular 
disease and an eGFR>30 mL/min/1.73m2 [134]. In 
comparison, losartan treatment of similar population having 
DN was associated with 28% delay in the onset of ESRD 
during a mean follow-up of 3.4 years [135]. In addition, 
empagliflozin was associated with 39% reduction in incident 
or worsening nephropathy, 38% reduction in progression to 
overt albuminuria and 44% reduction in doubling of serum 
creatinine [134]. The significant favorable outcome of 

SGLT2Is is attributable to their effect on glomerular hyper 
filtration, blood pressure, body weight and serum UA in 
diabetic patients [136-138]. In addition, SGLT2Is inhibit 
NHEs on surface of cardiomyocytes, endothelial cells and 
renal tubular epithelial cells. NHE inhibition can explain the 
unique cardioprotective and renoprotective actions of 
SGLT2Is [139-141]. Decreased renal blood flow induced by 
SGLT2Is is related to tubuloglomerular feedback and not 
related to RAS blockade. Empagliflozin and dapagliflozin 
increase plasma aldosterone and angiotensin II [142,143], 
together with urinary angiotensin converting enzyme and 
angiotensin converting enzyme [144].  

When T2DM patients (total of 1450 cases) receiving 
metformin were randomly assigned to either once-daily 
canagliflozin 100 mg, canagliflozin 300 mg or glimepiride 
titrated to 6-8 mg for 2 years, eGFR declined by 3.3, 0.5 and 
0.9 ml/min/1.73 m2/year in glimepiride, canagliflozin 100 
mg and canagliflozine 300 mg groups respectively (P<0.01 
for each canagliflozin group versus glimepiride) in spite of 
comparable reductions in HbA1c. In addition, UAE declined 
more with canagliflozin 100 mg or canagliflozin 300 mg 
than with glimepiride. These results further support that the 
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renoprotective effect of SGLT2Is is independent of their 
glycemic effect [145]. Contrary to DPP4Is and sulfonylureas 
that are significantly associated with increased risk of 
diabetic retinopathy, SGLT2Is were not associated with a 
higher risk of diabetic retinopathy than placebo among 
100 928 patients with T2DM included in 37 independent 
randomized controlled trials with 1806 diabetic retinopathy 
events [146].  

FREE OXYGEN RADICALS SCAVENGERS 

The role of reactive oxygen species (ROS) in the 
pathogenesis of diabetic complications is overwhelmed by 
many preclinical studies. However, the less favorable 
outcomes of different antioxidants to prohibit the 
development or progression of diabetic complications in 
large clinical trials have dampened the enthusiasm for the 
use of antioxidant agents in diabetes [147]. Clinical studies 
using vitamin A, C and E as antioxidant agents in pre-
diabetic and T2DM patients were disappointing. Nuclear 
factor erythroid 2-related factor 2 (Nrf2) is a transcription 
factor that protects and restores cell homeostasis upon 
activation. Although Nrf2 is adaptively activated in 
hyperglycemic status, this activation does not reach the 
sufficient level capable to combat the oxidative stress fueled 
by hyperglycemia [148]. Insufficient Nrf2 activity is often 
associated with the pathogenesis of diabetes and its 
complications [149]. Natural products can activate Nrf2, as a 
potential therapeutic target to control diabetic complications 
[149,150]. Cruciferous vegetables are rich source of 
sulforaphane, resveratrol is present in grapes, rutin is found 
in buckwheat, black tea, citrus fruits, and apple peels, 
cinnamic aldehyde is found in cinnamon essential oil, 
curcumin is found in turmeric, berberine in Berberis 
mahonia plant, actinidia callosa in kiwi fruits, Sinomenine in 
the root of the climbing plant Sinomenium acutum, garlic 
and bitter melon. All these agents are natural Nrf2 activators 
[151-154].  

Consumption of 10 g of broccoli sprouts powder, a rich 
source of sulforaphane, daily for four weeks was associated 
with significant improvement in insulin resistance in sixty 
three T2DM patients [155]. In a double blind trial in T2DM 
patients, the study candidates consumed oral 2 × 5 mg 
resveratrol (resveratrol group) or a placebo (control group) 
for four weeks. Resveratrol significantly decreased insulin 
resistance, urine ortho-tyrosine/creatinine ratio as an index 
of ROS production and platelets’ phosphorylated protein 
kinase B (pAkt):protein kinase B (Akt) ratio. These results 
indicated that resveratrol improves insulin sensitivity in 
humans, propably due to decreased oxidative stress with 
consequent more efficient insulin signaling via the Akt 
pathway [156]. A more recent study of ten T2DM subjects, 
12 week daily consumption of 3 g of resveratrol increased 
skeletal muscle Sirtuin1 and adenosine monophosphate 
kinase enzymes expression. These findings can further 
support the insulin sensitizing effect of resveratrol [157]. On 

the other hand, resveratrol supplementation over five weeks 
in fourteen T2DM diet controlled patients did not have 
significant effect on glycemic control [158]. 

In seventy-five patients undergoing primary cardiovascular 
disease prevention including diabetic patients, resveratrol-
rich grape supplement significantly decreased high-
sensitivity C-reactive protein, tumor necrosis factor-α, 
plasminogen activator inhibitor type 1 and increased anti-
inflammatory interleukin-10. The authors concluded that 1 
year consumption of a resveratrol-rich grape supplement 
improved the inflammatory and fibrinolytic status in high 
cardiovascular risk and diabetic patients [159]. The 
beneficial anti-inflammatory effect of resveratrol-rich grape 
supplement was further supported in a later study of 35 
T2DM male patients. One year consumption of resveratrol-
rich grape supplement down-regulated the expression of pro-
inflammatory cytokines in circulating mononuclear cells 
[160]. However, a more recent and larger study failed to 
prove a significant impact of low dose (40 mg/day) and 
higher dose (500 mg/day) used for 6 months on fasting 
blood sugar, glycated hemoglobin or c-reactive protein 
[161]. When 36 dementia-free, T2DM 49-78 years old 
patients consumed single doses of synthetic trans-resveratrol 
(75, 150 and 300 mg) at weekly intervals, trans-cranial 
Doppler ultrasound both before and 45 min after treatment 
had shown that only the 75 mg dose was efficacious to 
improve the cerebral vasodilator responsiveness in both 
middle and posterior cerebral arteries [162]. In addition, a 
single 75 mg dose of resveratrol was found to improve 
neurovascular coupling and cognitive performance in 36 
T2DM adults aged 40-80 years [163]. A more recent study 
has shown that a daily 100 mg resveratrol supplementation 
for 12 weeks in 50 T2DM patients was associated with a 
significant decrease of arterial stiffness estimated by cardio-
ankle vascular index [164]. 

When endothelial function was assessed using digital 
volume plethysmography to measure change in reflective 
index, oral intake of curcumin 150 mg twice daily for eight 
weeks has led to significant improvement in endothelial 
function [165]. Supplementation of twenty T2DM patients 
suffering overt proteinuria with 22 mg of curcumin three 
times daily for 2 months significantly decreased urinary 
protein excretion and urine IL-8 beside serum levels of TGF-
β and IL-8 [166]. Curcumin in a dose of 500 mg 
administered three times daily for 9 months in 120 pre-
diabetic patients significantly improved insulin resistance 
and beta cell function with consequent prevention of 
diabetes [167]. Further studies supported the favorable anti-
diabetic effect of curcumin [168-170]. 

RECOMMENDATIONS OF DIABETES 
ASSOCIATIONS 

In October 2018, the European Association for the Study of 
Diabetes (EASD) and the American Diabetes Association 
(ADA) have issued an updated consensus statement on 
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management of hyperglycemia in type 2 diabetes patients. 
This consensus was published during the annual meeting of 
EASD in Berlin, Germany. In this consensus, patients with 
clinical cardiovascular disease should receive one of 
SGLT2Is or GLP-1RAs, while in patients with chronic 
kidney disease (CKD) or clinical heart failure and 
atherosclerotic cardiovascular disease (ASCVD), SGLT2Is 
should be considered [171]. The choice of diabetes therapies 
as recommended by the American Association of Clinical 
Endocrinologists (AACE) and American College of 
Endocrinology (ACE) must be individualized based on many 
attributes including the risk reduction in heart and kidney 
disease [172]. 

NOVEL MARKERS OF DIABETIC 
COMPLICATIONS 

Mannose-binding lectin (MBL) is a recognized protein of 
the innate immune system. It is composed of a lectin 
(carbohydrate-binding) moiety attached to a collagenous 
moiety. MBL binds to a wide range of sugars that permits 
MBL permits to interact with a wide range of viruses, 
bacteria, yeasts, fungi and protozoa containing such sugars 
within their cell walls or membranes. When bound to its 
target sugar moiety, MBL can activate the complement 
system in the classic pathway or in C1-independent manner 
[173]. MBL is independently associated with HbA1c among 
diabetic patients [174]. MBL is involved in complement 
activation within the diabetic kidney [175] and was 
discovered as a possible independent predictor of DR, DN 
and other vascular complications in type 1 and type 2 
diabetes [176-181]. 

In 297 newly diagnosed type 2 diabetic patients, serum 
fibrinogen was a strong predictor for DN [182]. Serum 
Adiponectin was proved as strong predictor of DN in both 
type 1 and type 2 diabetic patients according to a recent 
meta-analysis of 13 studies including more than five 
thousand cases [183].   

DISCUSSION 

The annual mortality rate secondary to kidney disease has 
risen over the last decade to above 5 million worldwide. This 
alarming rate is mainly attributed to the increased rate of 
obesity with consequent increase in the rate of type 2 
diabetes, hypertension and cardiovascular disease [184]. 
Diabetic complications pose a huge public health and 
economic burden. Before the last 2 decades, the medical 
community has witnessed long term inertia in the available 
therapeutic tools that can prevent or delay progression of 
these complications. The introduction of GLP1RAs, DPP4Is 
and SGLT2Is has revived the hope to effectively prevent or 
slow the rate of progression of these complications. Beside 
their efficiency to control blood sugar, these agents have a 
favorable effect on body weight with decreased likelihood to 
experience hypoglycemia. In view of these valuable effects, 
the American diabetes association considered SGLT2Is as 

second- or third-line anti-hyperglycemic treatment [185]. In 
addition, the updated consensus statement on management 
of hyperglycemia in type 2 diabetes issued by EASD and 
ADA has recommended the early introduction of SGLT2Is 
and GLP1RAs to diabetic patients with clinical 
cardiovascular disease and SGLT2Is to patients with CKD 
or clinical heart failure and ASCVD. The results of 
CREDENCE trial that appeared couple of days ago have 
supported the significant cardioprotective and renoprotective 
of SGLT2Is in diabetic CKD patients. Canagliflozine 100 
mg daily succeeded to convince the investigators to 
prematurely terminate the trial prematurely after a planned 
interim analysis on the recommendation of the data and 
safety monitoring committee. This analysis has shown a 
highly significant reduction of the primary composite end 
point by 34% after 2.6 years of treatment. All patients in this 
study had albuminuria >300 mg/day and had eGFR between 
60 and 30 ml/min/1.73m2. These data highly suggest that the 
beneficial effect of SGLT2Is is not likely related to the anti-
hyperglycemic effect of these agents [186].  

In view of these results and according to the accumulating 
evidence, more energetic primary preventive approach 
should be tailored. Routine screening of diabetic patients for 
likelihood to develop diabetic nephropathy using the early 
predictors like serum MBL, fibrinogen or adiponectin can 
help researchers to select patients prone to develop diabetic 
nephropathy. These patients should be studied looking for 
the capability of SGLT2Is to prevent the development of the 
disease instead of waiting till they develop albuminuria. 
Similar studies should be designed to study the possible 
impact of administration of GLP1RA, SGLT2Is and/or 
DPP4Is on the rate of development of different 
cardiovascular events in selected high risk diabetic 
population. 
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